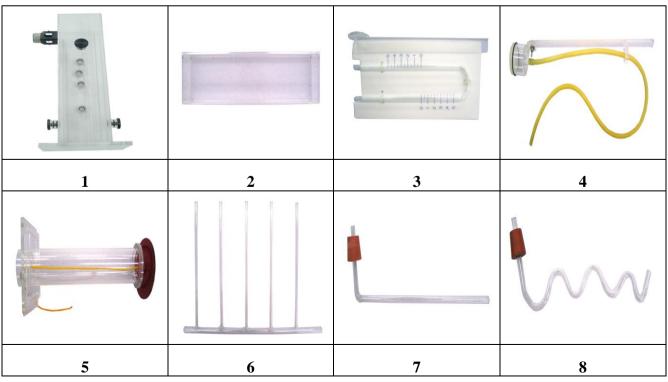
A01-600S-Y01


液體壓力綜合實驗箱

一、實驗項目索引:

1.	連通管水位的變化實驗	p05
2.	距離遠近水壓的變化	p07
3.	水中頂部壓力的實驗	p09
4.	水中底部壓力的實驗	p11
5.	水中側面壓力的實驗	p13
6.	水中靜壓力與深度的實驗	p15
7.	水的側壓力觀察	p18
8.	水的上壓力觀察	p20
9.	浮力與漂浮實驗	p23
10.	阿基米得原理實驗	p27
11.	固體密度的測定	p30
12.	不同管徑毛細現象,水位上升觀察	p33
13.	平板玻璃毛細現象,水位上升觀察	p37
14.	虹吸管	p41
15.	帕斯卡原理實驗	p43
16.	表面張力實驗	p46

二、實驗儀器:

編號	名 稱	數量	編號	名 稱	數量
1	直立蓄水槽	1	2	横列蓄水槽	1
3	U型水壓計	1	4	水壓測定器	1
5	水的上壓力觀察器	1	6	平行壓克力管	1
7	L型玻璃管	1	8	S型玻璃管	1
9	壓克力支柱	2	10	附掛鉤接頭	1
11	連接軟管	1	12	密度測量用體 (同體積)	3
13	密度測量用體(同質量)	3	14	浮力測量用體:密度>1	1
15	浮力測量用體:密度<1	1	16	阿基米得實驗圓筒	1
17	毛細管	3	18	毛細管支架	1
19	毛細現象用玻璃板	1	20	毛細現象方格玻璃板	1
21	表面張力器:圓形	1	22	表面張力器:三角錐	1
23	表面張力器:四角錐	1	24	長尾夾(1大4小)	5
25	虹吸管	1	26	帕斯卡原理儀	1
27	L型管	1	28	彈簧秤	1
29	量筒	1	30	滴管	1
31	硬泡棉支撐座	2	32	砝碼組	1
33	細繩	1	34	連接器1	1
35	連接器 2	1			

110 110			
29	30	31	32
	+		
33	34	35	

實驗一、連通管水位的變化實驗

一、實驗目的:

觀察連通管原理以及壓力的定義,進而了解連通管在日常生活中的應用。

二、實驗儀器:

編號	名	稱	數量	編號	名	稱	數量
1	直立蓄水槽		1	7	L型玻璃管		1
8	S型玻璃管		1				

三、實驗原理:

連通管原理指的是,在多個盛裝相同密度液體的容器中,因為液體的深度越深,其 壓力就越大,液體會往壓力低的地方流動。因此在整個系統中,當液體停止流動時,相 同高度的液體壓力將會相同,代表液體的水平面將會等高。

在本實驗中,我們設置了直立式蓄水槽與另外兩種不同形狀的玻璃管,利用染色劑 染色液體,來觀察液體在不同形狀容器中的水位高低。

四、實驗步驟:

- 1. 實驗裝置如**圖 1**,將 L 型玻璃管與 S 型玻璃管固定於直立蓄水槽旁。
- 2. 在直立蓄水槽中倒入適量的水,並在水中滴入數滴的染色劑,以利觀察。
- 3. 觀察不同形狀的玻璃管中水位高低的差別,並紀錄之。

圖 1

五、實驗結果與問題討論:

第一次倒水,兩管是否等高?	
第二次倒水,兩管是否等高?	
第三次倒水,兩管是否等高?	

- 1. 每次倒水之後,中間的直立蓄水槽水位高度是否有和旁邊兩管等高?
- 2. 討論連通管原理在日常生活中的應用。

實驗二、距離遠近水壓的變化

一、實驗目的:

觀察距離水塔遠近,流動的水壓造成水高度不同的現象,以了解水壓的不同。

二、實驗儀器:

編號	名	稱	數量	編號	名	稱	數量
1	直立蓄水槽		1	2	横列蓄水槽		1
6	平行壓克力管		1	24	長尾夾(大)		1
31	硬泡棉支撐座		2	34	連接器1		1

三、實驗原理:

根據連通管原理,在各管上方接觸相同大氣壓,且下方管子連通的連通管裡,當管內液體流動不是非常劇烈時,容器內液體的水平面將會等高。

此時,若將連通管一端底下開一個孔洞使水可以流出,在水完全流光之前,連通管水位高度將會如何?從實驗可以發現,距離出水口越遠的水位越高。這是因為兩端壓力不同而造成的水流動,流動水的壓力在各點並不會相同,而是由壓力較高處逐漸下降至壓力較低處,反過來說,其實也就是因為各點壓力不同才會造成水流動。比較連通管的水則是接近靜態的狀況。

四、實驗步驟:

- 1. 實驗裝置如圖 2。
- 2. 事先將平行管尾端軟管以大長尾夾夾住,以防止水流出。
- 3. 在直立蓄水槽中倒入適量的水,並在水中滴入數滴的染色劑,以利觀察。
- 4. 移開夾子,觀察壓克力管中水位高低的差別,並紀錄之。

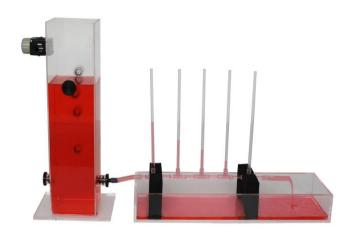


圖 2

五、實驗結果與問題討論:

蓄水槽	壓克力管 1	壓克力管 2	壓克力管3	壓克力管 4	壓克力管 5	出水口
水位高						出水口

(填入最高、次高、中間、次低、最低)

- 1. 水開始流動之後,當蓄水槽的水越來越少,同一支壓克力管的水位是否一樣?
- 2. 討論距離遠近水壓變化在日常生活中的應用。

實驗三、水中頂部壓力的實驗

一、實驗目的:

利用水壓測定器觀察水中頂部的壓力,由U型水壓計可觀察壓力造成的水位落差。

二、實驗儀器:

編號	名	稱	數量	編號	名	稱	數量
1	直立蓄水槽		1	3	U型水壓計		1
4	水壓測定器		1	11	連接軟管		1

三、實驗原理:

壓力為單位面積所受的垂直面積方向的力量 $P=\frac{F}{A}$,在深度為 h 的液體中,假設有一面積為 A,則 A 所受到的力量 F 為上方的液體重,即是液體體積 $A\times h$ 再乘上密度 d,因此 $F=A\times h\times d$,也就是說,A 面積所受到的力量為 $A\times h\times d$,和 面積上各點所受到的壓力為 $P=\frac{F}{\Delta}=\frac{A\times h\times d}{\Delta}=h\times d$ 。

因此液體中各點的壓力只與深度有關,同深度的上壓力、下壓力、側壓力皆相同,本實驗利用水壓測定器觀察水中頂部的壓力,由 U 型水壓計可觀察壓力造成的水位落差。由於水壓會使測定器的橡皮膜變形而擠壓內部空氣,內部空氣受到擠壓之後增加的壓力則表現在 U 型水壓計上。